If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+18x-8=0
a = 7; b = 18; c = -8;
Δ = b2-4ac
Δ = 182-4·7·(-8)
Δ = 548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{548}=\sqrt{4*137}=\sqrt{4}*\sqrt{137}=2\sqrt{137}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{137}}{2*7}=\frac{-18-2\sqrt{137}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{137}}{2*7}=\frac{-18+2\sqrt{137}}{14} $
| 2/3-1/6=5/6x-2)3 | | 0.3x(x-5)=0.2(6+x) | | X-12+2x-220+1/2x+6=180 | | 3(2x-6)+7x=8+8(4x+6) | | 3(2x-6)+7x=8 | | -6x+5+1=-30-18x | | -8x+5+5x=2x-20 | | 360=5x+(4x-5)+(6x-10) | | 2x+1+6x+9=90 | | 12x-31=7x+34 | | (3x+41)=(7x+9) | | 2(0.5q+1)=(-3)(2q-1)+8q+4 | | 8x-5=10-4(-2+3) | | (3x+41)+(7x+9)=180 | | (5x-64)+3x=180 | | 2p^2+8=-3 | | X5)x5=75 | | 250=1300/x | | 35=70x/4 | | 500=0.04t | | 3x-3+4x+4+60=180 | | 4/x-4=8/x-6 | | 3/5x=21. | | 9y+68=-6 | | 253=-u+51 | | 4/3(c+4)=3 | | 4/4(c+4)=3 | | -6x-3=3x+13 | | -16=5-3u | | -1.8+2.7x=0.9 | | j2-12=120 | | 6=-8/9+u |